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A Schr6dinger equation equivalent to the Langevin equation of ion motion in 
ICR cells is presented. A wave function for the scattering states has been found 
as the solution to the equation of ion motion under the influence of electric and 
magnetic fields perturbed by a scattering potential. Applying the minimized 
wave packet as a wave function describing coherent states, the scattering 
amplitudes are determined explicitly. The connection between the collision 
cross section and the scattering amplitudes is found by making use of the in- 
coming and outgoing particle flux density. The collision cross section found in 
this way is converted from quantum theory to classical physics. The collision 
cross section, which plays an essential role in the determination of rate constants 
can be determined by the aid of ICR experimental data if the contribution of an 
alternating electric field is taken into account. 

Key words: Ion cyclotron resonance spectrometry-  Collisionally damped ion 
motion in ICR spectrometry 

1. Introduction 

The motion of ions under the influence of electric and magnetic fields can be well 
described by classical physics. Many authors [1-4] have contributed the essentials 
applying classical physics to this field, for instance the determination of rate con- 
stants of ions in the gas phase by measuring the halfwidths of ICR spectral lines. 
In spite of the fact that the results agree well with the measurements, the applied 
classical theories conceal certain difficulties. With regard to this point, we may 
remind of the collision frequencies and the scattering cross sections obtained 
classically. These quantities can not be determined rigorously within the scope of 
classical physics. Despite this difficulty, one will be compelled to accept some lack 
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of exactness in the theory, for example in the case of the impact parameters, if one 
dares to determine such quantities theoretically. Another possible means for the 
treatment of ions in the gas phase is quantum theory. But one may think that a 
quantum mechanical treatment is unnecessary because the ions behave practically 
like classical particles in the gas phase. We agree entirely with those who refuse to 
apply pure quantum states as these are quite different from the classical states [ 16]. 
Nevertheless we argue that coherent states which consist of infinitely many pure 
quantum states can be applied to the classical problem. Hartmann and Chung [5] 
have used the minimized wave packet as a wave function for such coherent states 
to describe the ICR power absorption. In another paper, Hartmann and Chung 
have furthermore shown in which way such quantum theoretical results can be 
converted to classical ones [6]. 

The cyclic course we are going here, starting off from the classical formulation of 
the problem and returning to classical physics again after a quantum theoretical 
excursion, still has a gap inasmuch as the quantum mechanical formulation of the 
problem has not been deduced so far on the basis of the classical formulation. We 
now close this circle by bridging the gap. This may be done by the aid of the methods 
developed by Madelung and Mrowka [7, 8], who use three principles as axioms in 
their representation theory of quantum mechanics, namely: 

1) Heisenberg's uncertainty principle or complementarity, 
2) the fact that interference phenomena show up in experiments with material 

systems and 
3) correspondence principle or Ehrenfest's theorem. 

The aim of this work is to pursue the cyclic course, starting from the well estab- 
lished classical tlaeory, proceeding by a quantum mechanical excursion to evaluate 
the results, and returning to classical theory again by a conversion of the results 
obtained quantum theoretically to the corresponding classical expression. As an 
example, we shall treat the Langevin equation of ion motion in the ICR cell which 
will be represented by the corresponding Schr6dinger equation. The solution of the 
equation turns out to be a solution of scattering states from which we obtain the 
scattering cross section. This cross section will be converted to the classical ex- 
pression which can be applied to determine the rate constants. 

2. The Wave Equation Equivalent to the Langevin Equation 

The motion of an ion undergoing collisions with the background neutrals in ICR 
cells can best be described classically by the Langevin equation 

m b =  e E  + e (v x H )  - rnFv (1) 
c 

where r is the damping parameter, E the electric field, and H the magnetic field. 
To obtain the SchrBdinger equation equivalent to the Langevin equation (1), we 
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apply the methods of Madelung and Mrowka. The force acting on the ion is given 
by 

K = e{ -grad 0 3 1 a A 1  } - c  a-7 + c ( v  x rotA) - m P ~ .  (2) 

Assuming that the distribution function p is a bilinear form 

p = ~.~.~> 0 (3) 

with the probability amplitudes ~(v, t) and/3(r, t), and where the statistical current 
density of the representation points is given by 

j = C{/3 grad ~ - c~ grad/3} - a~/3, (4) 

we obtain by the aid of the continuity equation 

~5 + divj  = 0 (5) 

the differential equation 

(Z 

a +  C 2 x c ~ - ~ d i v a -  (a.gradc 0 + f c ~ = O ;  (6) 

and with p = ~/3;j = pv we get 

dv f O J d r - - m f  { - g r a d  ( 2 C f -  ~ )  aa m - ~ = m  N P --~ 

Comparison with 

g= e f p ( - g r a d  03 cl aAat mFv + 

shows that the relations 

+ (v x rot a)} dr. 

aa e aA 
m - + mFv 

at c at (7) 

2Cmf - 2 a2 = e03 

should be satisfied. 

We make use of the fact that the Schr6dinger equation is invariant under a gauge 
transformation of the potentials accompanied by a unitary phase transformation 
of the wave functions: 

1 aP 
.,~= A + g r a d r ;  ~ = 0 3 - - - -  

c at 

tF = exp F �9 T. 

(8) 
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With this gauge transformation, utilizing the first equation of (7) we can choose 
the function ~ to fulfill 

e grad/~ + r r  = 0, (9) 
m c  

so that the solution of the first equation yields 

__eA. a = ( 1 0 )  
m c  

Integrating Eq. (9) we obtain 

= me  Fr 2 + g ( t )  (11) 
2e 

where g( t )  is a function of time alone. 

With the identifications a = e(~eI~c)~..uT; C = h[2mi the differential equation (6) 
multiplied by the factor h/i, turns out to be 

he ( A . g r a d )  + A 2 h 2 Vz he d i v A - 7 - -  + e O -  g(t) 
~t 2m - 2im-----e tmc 

�9 e " e / ~ - ~ .  �9 = 0 .  ( 1 2 )  

Assigning [f~ - (e[c)~,] to the operator in Eq. (12) and multiplying by 

exp [ ( -  ie/he)F*] 

from the left, we can express the Schr6dinger equation (12) as 

e(-~/~c'~'[f2 - e g]eC~/~'~F = ( ~  = 0. (13) 

Because of the symmetric gauge of the vector potential A = �89 • r) the relation 
(A. r) = 0 is valid and the operator ~ assumes the form 

m F2r2 ih fi = f ~ + ~  + ~ - r .  (14) 

Using the transformation ~r = e ~v/2~t Eq. (13) can be converted to 

( m ) ( m ) 
g - ~ f i ~ - ~ ' - F  = a + -~ r~ r  ~ [ e ~ - ~ ' ~ . ~ ]  = n + -~ r~r  ~ �9 = 0. (15) 

The Schr6dinger equation equivalent to the Langevin equation of motion (1) is 
therefore given by 

( 1  (~ e ) 2 f ~ [ e C - V ' z ~ ]  (15a) ~-~ V -  A + e~ + T .[e~-rtz)t.WF] = i h ~  �9 . 

In this equation the wave function q: = er contains the damping factor 
e ~-r/2~t and the additional energy T = (m/2)F2r  2 occurs; both of them are due to 
the damping term in the Langevin equation. 
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3 The Scattering States of Ions 

To describe the effects of the scattering potential T on the ion motion in the 
homogeneous fields, T should be regarded as a small perturbation. The problem 
therefore is to solve the equation f~F = - T~F. Because of the separable form of the 
scattering potential T = 7'1 + Tli together with the decoupling of the electric 
potentials by the parametrization eC~lt = eq~j[({r• z) and eO)• = eO• (z})[9], 
the motion can be treated by the product ansatz ~ = Re~ "~ll for the wave function. 

The wave function for the ion motion in the magnetic field direction obeys the 
wave equation 

Ot 2m dz 2 + e(P"((r• z) ' f l l(z,  t) = --TiiW'll(z, t). (16) 

By the aid of the Green function which satisfies the equation 

Ot 2m dz 2 + (eq)ll) Gil(z - . z ' ,  t - t ') = -3 (z  - z ' ) .  3(t - t') (17) 

the general solution of Eq. (16) may be written in the form 

"F,(z, t) = Vail(Z, t)  + dz' drGH(Z , ,)Til~o,(z', t'), (18) 
r  

where Z = z - z',  r = t - t '  and pll(z, t) is a solution of Eq. (16) in the homo- 
geneous case. Green's function G(Z ,  r), which satisfies Eq. (17), is given by 

t 2 m \  1/2 1 .| (19) 
GIt(Z, r) = ~-le~(~/4>/--I~rh a] 777"exp - ( e O l t } r  + 2  -7- 

where @(~) is the Heaviside function. 

Carrying out the time integration in Eq. (18) inserting expression (19) for GII(Z, r), 
we obtain 

f; C, II(Z ) = drGil(Z,  r)-exp [ - ( i / h ) E ~ t ' ]  

~  = t ~-K~/-exp iKI]Z - ~ El?t (20) 

where 

[2m o q 1/2 
KII = [-h-7-(Et, - (eO,,})] and EI~ = (n  + �89 t. 

The solution for the scattering states can be expressed as 

( iE,~t).~(~,it[q)l,~}(q),,~lT,,,q),, ) (21) Wll(z, t) = q)ll(z, t) + exp iKllz - -h 

with 

lff],} h2KHim exp(iKiiz ,  ) and ~ I~o~,,><~o~,,I, --1. 

Wave function (21) constitutes a linear harmonic oscillator function plus a propa- 
gating plane wave. 
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Taking 7"1 = (m/2)P2r 2 as a perturbation we can write the general solution for the 
wave function Wa(r• t) with the Green function for this problem 

m 1 i 

(22) 
a s  

= q~•177 t) + f d2r~f dt'Gl(R., r)T.cp.(r;, t') (23) ~F ,(r• t) 

where qJ.(r.,t)= ~(r• -(rm). The function q~•177 t) is the solution of 
the Schr6dinger equation for this problem without the perturbation [10]. 

The time integration can be carried out exactly and yields 

fo ~ / i o , t  r177177 = drG,(R,,  r)-exp ~ -  ~ E• ) 

- 2~rh 2 exp (As(r;). R,) - E~ .irr Hd(K, Rs) (24) 

with 

(2m o }1/2 2m z ~ TeED -2m w2" K. = ~-h-~-(E• - (eCP• and E ~ = oocRc - YM + 

AS the Hankel functions Ho ~ are particularly suited for the description of damped 
oscillations [11], expression (24) reflects the character of the motion due to 
collision correctly. Because the damping effect is large only near the scattering 
center, the dominant contribution to the integral with regard to r; in Eq. (23) comes 
from the region r; << r• As we need the solution at large distances r, we replace 
the Hankel function by its asymptotic expression 

I-2-g ~,~14, R 2 . 2  i~rHa ~ dK-~" e . . . .  exp (iKiR• 

which is valid for K• >> 0 and K.RI  > 1. 

Moreover, when using the approximation R, = rs - (rs. r;)/r• the wave function 
�9 .(r . ,  t) can be written as 

~F• t) = ~s(r,, t) + rZ1/2.exp \ iK,  r, - 

(25) 
with 

m e_,(~l,,(2~r~ll2.exp(-ie } ]g'*> = ~ \ -~]  W (a.(r;) .R.)  - iK~r; cos | . (26) 

The wave function ~F• consists of a phase-transformed screw function and an 
outgoing cylindrical wave with damped amplitude. The matrix elements and 
integrals which appear in expressions (21) and (25) can exactly be evaluated with 
the pure quantum state wave functions. As we are interested in the classical be- 
havior we intend to evaluate these quantities by applying coherent states. 
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4. The Minimized Wave Packet  as a Coherent State 

A suitable means to describe classical ion motions in quantum theory is a wave 
packet constructed of infinitely many pure quantum state wave functions and 
minimized according to the uncertainty principle. The trapping motion of ions in 
the direction of the magnetic field can be described by the wave functions of the 
linear harmonic oscillator. Hartmann et al. [9] have applied such wave packets to 
solve the problem of the exact mass determination. The minimized wave packet is 
given by 

(v,,(z, t) = (-~)z /2"exp ( - ~  (z - a~(t))Z}'exp (-2~od) 
(27) 

=~P,~U,~(az)'exp(-h(n+�89 } 

with the weight function 

p~ = (2~Mn.t)- 1. exp - g a~ �9 (aa~) ~ 

and 

u~(az) = I ~ ]  .exp 2 & H~(~z) with c~ = \ h 2 ]  . 

Applying this wave packet solution (27), the integral in Eq. (21) shows the result 

�9 _ m i ~ o t t ) .  (28) 
/ 

The matrix element (c~tjlTii]pEi) according to Eq. (21) can also be evaluated and 
converted making use of the relations 

m p*~p~ = 1 and (n + �89 = ~ o~b~, (29) 

to the classical quantity 

(~11 rTli [qsii) = mP2b~ = 2EEl ~ (30) 

Introducing the collision wave number Kfr oon = [(2m/h2)EFi oo11] 1/2 and considering 
Eqs. (28) and (30), the wave packet solution can be expressed as 

[ i o g'l,(z, t) = c?,,(z, t) + S(~,,, ~,,, Kli)'exp ~iKE,z - -~ Et, t) (31) 

with the scattering amplitude 

f(71i, 3il, KIi) = i(2~r)l/~;el~/~/2-~H exp ( -  BI~ - iKita~) , (32) 

where 

71i = Klioolx/Kit, fiB = K I I / B t  and Bt = -~t" 
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As KEI = (~/2)Kt, 311 turns out to be V'2-@4. Thus the scattering amplitude is 
completely expressed by classical quantities. Moreover it has the dimension of 
(length)-1/2 as a one-dimensional plane wave should have and rapidly vanishes at 
large distances from the scattering center. The solution (31) thus contains a typical 
scattering state that appears as a consequence of a collisionally caused damping 
term in the Langevin equation. 

To describe the motion of ions in the plane perpendicular to the magnetic field in a 
drift ICR cell we can also construct a minimized wave packet using infinitely many 
phase-transformed screw functions and obtain 

[b]l/2 {i  ie 
~• = 12-~] .exp ~ m[w.(p - a(t))] + ~ [A(rm)'(p - a(t))] 

b i i 
4 (P - a(t))2 + h mWXm - ~ oJct (33) 

. 1  

=~PNUN(p)'exp{-h(N+�89 ; ~ r  ~ = r •  

with the weight function 

1 e'N~'~+~'2'JN[K/-2\'t ~]-b) K= b 
P~ = ~/~-~ ' 2lrml" 

The phase-transformed screw function is given by [10] 

( <, ) b [b'~ N 1 ~l'2.exp u~(0) = ~ \~!  ~ !  ~ m(w.r.)  + (A(rm).r.) 

b 
- e x p [ - ~ ( r •  ) (34) 

with b = eB/hc and the drift velocity ]w[ = w = c(ED/B). By the aid of this wave 
packet (33) the integral (ff• acc. to Eq. (25) can exactly be evaluated as [12] 

m ~.~,~. /7-g~ 
<~•177 = ~ e ~ , ~ / - -  2~rh 2 ~ K •  

{ ~  ie (A(r~)'(r• + iK'r'mC~174 "(2~b)1'2"I~ �9 exp W(rm - a) + he 

with (35) 

b . ) ~ } . p  dp 

- 2 ~/b-7[  -exp - .~ + ~ - ~ l~l ~ 

i 
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where D-312(Z~) are parabolic cylinder functions of the arguments 

i 

with the abbreviations 

p = - - ~ a -  iK•  and ]~1 = x -  Xm, y - y ~  + ~ �9 

Because the scattering states of ions under ICR experimental conditions satisfy 
]Z• ] >> 1, [v I = 3/2 and [arg Z~ [ < 3~r, we can apply the asymptotic approxima- 
tion Dr(Z) ..~ ZV.exp (-Z2/4) .  The integral I,  in Eq. (35) reduces to 

e (-b/4'~2 3 ( a .2K•  
I, • b21~12 .2~,2.~. - ~ - ,  b[~[ " ( 3 6 )  

The matrix element (~•177 according to Eq. (25) can exactly be evaluated 
applying the wave packet solution (33). We convert the matrix element by the aid of 
the relations ~N P~PN 1 and (N + �89 z 2 = = (m/2)c%R~ to the classical express- 
ion in which neither the quantum number N nor Planck's constant h appears: 

m 
<r162 = ~ r~(R~ + r;~ ~) = E~o~. (37) 

The scattering state solution (25) therefore becomes 

eiK. r• 
LF z = ~l(r i, t; rm) q- - -  

rj. 

f 7  ie i E ~  (38) �9 exp - -  [w.(r~, - a)] + ~c [A(rm)'(r• - a)] - 

with the scattering amplitude 

f(@) = e-i(z/4). 3 . 7 ~ / 2  COS O'exp (iK• cos O) (39) 

for which we have applied the approximation of vanishing deviation a -+ 0 and 
I~1 -+  I~l .  We have assigned the abbreviations 

K.L con ( E• coil ~1/2 
7~ - K~ - . E  o - -  - ~ * ~ ) /  

and 

2K• = 2{2(E ~  (eqbz))]~ze (E  ~ -- (eCP• ~/2 
~ =  ~ \ m~o~R~ / =2_ �89 ! (40) 

and used the common estimation for the rotational energy 

m 2 2 �89 

The quantity 7'~ contains the adjustable parameter F, which can be determined by 
measurement of the half width of spectral lines if the effect of an alternating electric 
field is taken into account. 
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Summarizing the results (31) and (38), the solution for scattering states of ions in 
ICR drift cells turns out to be: 

{ i ie(A(rm).r• i } = ~) + ri l . f (O,  (z)) .exp iK• + -6m(w'r:") + hc -6 E~ 

Y - E ~  (41) i + fll((r,))" exp \iKiiz -6 
J 

with 
a \1/2[ b~l/2 (a2 b } 

e x p  - - Z - 

I, / /e } �9 exp ~mwx'~ + -6 [w(l~ - a)] + ~ [A(r~).(O - a)] 

and 

f(O, ( z ) ) =  f(O)-(~---~)l/=.exp { - - ~  ((z) - az) =) 

A((r .>)  = f ,"  ~.((r .>).  

Solution (41) shows that both scattering amplitudes contain the wave packet of the 
other mode of motion as a parameter. This result is exclusively due to our separa- 
tion ansatz for the wave function. 

5. The Collision Cross Section 
We rewrite solution (41) as 

= ~ + ~,~~ + ~,}ff'~ (42) 

Utilizing the reality of the function ~ with regard to z we express the incoming 
particle flux density as 

h 
j= = ~ (~* grad 6 - 6 grad ~*) 

~ 0 ~ 0 2~W2 090 I 
= I'e. 'z ,~ 1 + ~ -  = rm 2 - oJcwy~j *12 p.A 11= (43) 

k 

with 

o = [~F• 1 2,r a/2---~ exp - ~  (0 - a) 2 - "~ (z - a,) 2 . 

Requiring the particle flux density to be numerically equal to the velocity of the 
relative motion [13, 14], that is p = 1, we have to use normalized wave functions 

/2rr\ */= (b  _ a)9,).~Fo, , o =  t__b_ ) exp ~ (0 

(h  i ie ) = exp mwx'~ + -6 m[w, (p - a)] + ~-~ [A(r~). (1~ - a)] (44) 

�9 ~  ( - - ~ ) l ' = e x P { 4 ( z - - a ~ ) Z } - ~ ~  1. 
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We analogously normalize the outgoing wave functions. With these normalized 
outgoing wave functions we obtain the outgoing particle flux density 

Jso 

with 

U j _  ~ - -  

v• + (%/2)r~ 
rs I f (O)? + <,ls = 

hK~l hK• and v i i -  (45) 
m m 

Using Eq. (43) with normalized wave functions we find the following connection 
between the differential scattering cross section and the scattering amplitudes: 

d~ Lo = -=- r • dO dz 
Ja 

_ { v •  v'l } d |  (46) 
r~A1/2 If(O)l = + ~ If,] ~ r ,  

with 

if(O)]2 = rgy.o s 9  ~o5 cos 2 | and [ful 2 = (2rr)l/Uy~S/12Kfl exp (-28t~). 

Integrating with regard to z and the scattering angle 0 and evaluating (z} = bt and 
(r2,> = R~, respectively, we obtain the total cross section 

v L + (o%/2)rm 9 bt 
(7 = - , 4 1 / 2  16 ~r718~- R-7 + _ _  (2~r)a/27~at12Ktl exp. (-28~)Rcbt. (47) 

Applying the relations 

m 2 m (r x p ) ~ = ~ % ( r m - R ~ ) = - h N  and ( N + � 8 9  =~oJ~Rff 

(Ref. [10]) we find Ro >> rm, and the contribution from rm is therefore negligible. 

Replacing the abbreviations by the full terms and expressing the occurring quan- 
tities by determinable ones, we finally can write the total cross section in the form 

- =  gl + g [ - g U l f  
where 

367rc2~/'~ (m)  5/2 ~3 exp" (--rr/4) (48) 
gl - wt ; g2 = 2~/e wt 4 

Vt = trapping potential; % = trapping frequency; ED = electric field strength 
which resembles in the direction B x w, the Rayleigh law of scattering [15]. This 
expression (48) for the total cross section contains neither a quantum number nor 
Planck's constant h. 

We have thus returned from quantum mechanics to classical theory again. 

6. Conclusion 

In this paper we have shown how to treat ion motion in the gas phase quantum 
theoretically and how to convert the result obtained to a classical one again. 
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Starting with the classical Langevin equation o f  mot ion for ions in I C R  cells, a 
Schr6dinger equation equivalent to the Langevin equation has been set up by the 
aid of  the methods o f  Madelung and Mrowka.  In order to eliminate the damping 
term rnI'v we have made use o f  the invariance of  the equation under a gauge 
t ransformation of  the potentials accompanied by a phase t ransformation of  the 
wave function. The Schr6dinger equation found in this way contains two additional 
terms, namely the collision potential energy (rn/2)I'2r 2 and the constant  imaginary 
quantity (ih/2)F which causes a constant  energy displacement. We thus obtain a 
wave function of  the type exp [(-P/2)t]~F(r ,  t) which describes the damping 
process. Regarding the collision potential energy as a perturbation we have 
obtained the solution for the scattering states which consists o f  the free wave 
packet and outgoing waves. Normalizing the wave functions to make the particle 
flux density numerically equal to the relative velocity we have obtained the collision 
cross section which can be converted to the classical quantity. This quantity can be 
used to evaluate rate constants in I C R  if the contribution o f  the alternating 
electric field applied to the I C R  cell for ion detection is taken into account. The 
total cross section (48) is composed of  three terms, namely a first one due to 
cyclotron motion,  a second one due to drift mot ion and a third one taking into 
account  the trapping oscillation of  the ion. Equat ion (48) shows evidently that  the 
dependence on the electric and magnetic fields is different for each mode of  motion,  
and the experimental conditions therefore determine which mode of  mot ion 

becomes dominant.  

According to the dominant  term, e shows a different behavior. But in general 
increases with increasing I '  and therefore with increasing pressure. 
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